skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Voorhees, Peter W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graphical abstract 
    more » « less
  2. null (Ed.)
  3. Abstract Mineral compositions are used to infer pressures, temperatures, and timescales of geological processes. The thermodynamic techniques underlying these inferences assume a uniform, constant pressure. Nonetheless, convergent margins generate significant non‐hydrostatic (unequal) stresses, violating the uniform pressure assumption and creating uncertainty. Materials scientists F. Larché and J. Cahn derived an equation suitable for non‐hydrostatically stressed geologic environments that links stress and equilibrium composition in elastic, multi‐component crystals. However, previous works have shown that for binary solid solutions with ideal mixing behavior, hundreds of MPa to GPa‐level stresses are required to shift mineral compositions by a few hundredths of a mole fraction, limiting the equation's applicability. Here, we apply Larché and Cahn's equation to garnet, clinopyroxene, and plagioclase solid solutions, incorporating for the first time non‐ideal mixing behavior and more than two endmembers. We show that non‐ideal mixing increases predicted stress‐induced composition changes by up to an order of magnitude. Further, incorporating additional solid solution endmembers changes the predicted stress‐induced composition shifts of the other endmembers being considered. Finally, we demonstrate that Larché and Cahn's approach yields positive entropy production, a requirement for any real process to occur. Our findings reveal that stresses between tens and a few hundred MPa can shift mineral compositions by several hundredths of a mole fraction. Consequently, mineral compositions could plausibly be used to infer stress states. We suggest that stress‐composition effects could develop via intracrystalline diffusion in any high‐grade metamorphic setting, but are most likely in hot, dry, and strong rocks such as lower crustal granulites. 
    more » « less
  4. Solid oxide cells (SOCs) have important applications as fuel cells and electrolyzers. The application for storage of renewable electricity is also becoming increasingly relevant; however, it is difficult to meet stringent area-specific resistance (ASR) and long-term stability targets needed to achieve required efficiency and cost. Here we show a new SOC that utilizes a very thin Gd-doped ceria (GDC)/yttria-stabilized zirconia (YSZ) bi-layer electrolyte, Ni–YSZ cell support with enhanced porosity, and electrode surface modification using PrO x and GDC nanocatalysts to achieve unprecedented low ASR values < 0.1 Ω cm 2 , fuel cell power density ∼3 W cm −2 , and electrolysis current density ∼4 A cm −2 at 800 °C. Besides this exceptionally high performance, fuel cell and electrolysis life tests suggest very promising stability in fuel cell and steam electrolysis modes. Electrochemical impedance spectroscopy analysis done using a novel impedance subtraction method shows how rate-limiting electrode processes are impacted by the new SOC materials and design. 
    more » « less